

Recent results from CMS

Yurii Maravin (KSU) on behalf of the CMS collaboration

Wine and Cheese Seminar, 03/15/13

Thanks LHC for fantastic 3 years!

CMS Integrated Luminosity, pp

Performance is impressive

- CMS detector operates at ~94% efficiency
 - Most of the results to be shown today use the full data set

CMS Integrated Luminosity, pp, 2012, $\sqrt{s}=8$ TeV

A very prolific 3 years

Public physics results info:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

New addition

- The most exciting results from the LHC is a discovery of a new SM Higgs-like boson in 2012
 - Mass is 125.8 ± 0.6 GeV
 - A very interesting mass range: stability of the Higgs potential is excluded at $\sim 2\sigma$

- Signal strength seems to agree with the SM predictions...
- What are news from CMS in 2013?

Outline of the talk

• Recent Higgs results from CMS with full data set

- H→ZZ→4ℓ
 H→WW→2ℓ2ν
 spin-parity studies
- $H \rightarrow \tau \tau$

New results from searches for SM extensions

- Search for natural SUSY in multi(b)jets and MET
- Search for heavy resonances in dilepton and lepton + MET signatures
- Searching for lots of invisible things with monojets

Study of H→ZZ production

- Four isolated leptons from the same vertex
- HIG-13-002

- Good mass resolution, and *excellent S/B ratio*
- Backgrounds: ZZ continuum, Z+jets, Zbb, tt
- Very demanding analysis due to soft isolated leptons in the final state
 - Identification, measurement of p_T, dealing with pileup...

Particle flow

- Excellent tracker +
 3.8T magnetic field +
 fine-segmented ECAL
- Use information from all the sub-detectors to reconstruct individual particles in the event
 - Form electron, muon, photon, charged and neutral hadron candidate lists
 - Improves energy and resolution as well as spatial resolution of energy flow in jets

Lepton identification

- Using particle flow significantly boosted the performance of the identification/isolation criteria
 - Using MVA techniques made further improvements, including the pileup mitigation

EM Energy scale & resolution

- Several sources of energy loss for electrons and photons:
 - Large amount of material in front of the ECAL results in strong Bremsstrahlung
 - ▶ Loss of energy is most pronounced in soft electrons
 - Crystals lose transparency with radiation
 - ▶ Some recovery during shutdowns
- Require constant calibration and monitoring using standard candles, such as $\pi^0 \rightarrow \gamma \gamma$, $Z \rightarrow ee$, $Z \rightarrow \mu \mu \gamma$ etc.

Tracker Material Budget

EM Energy scale/resolution

• Resolution obtained from Z—ee data and MC events

"Golden" ones (not much showering)

Low energy regime

- For H→ZZ analysis we use both Z and low-mass resonances to cross-check the energy scale
 - Energy scale is well-established within resolution

M_{4ℓ} distribution

M_{4ℓ} distribution

- Good description of the ZZ continuum (and Zγ)
- H→ZZ peak is clearly visible at ~126 GeV
 - One can use kinematics to separate signal from background more!

M_{Z1} vs M_{Z2}

- Z_1 vs Z_2 masses for $121.5 < M_{4\ell} < 130.5$ GeV
 - Z_1 : OS/SF nearest to the Z boson mass in $40 < M_{Z1} < 120$ GeV
 - Z_2 : OS/SF with the highest sum p_T with $12 < M_{Z_2} < 120$ GeV

Kinematic discriminant K_D

Function of several kinematic observables

$$K_D(\theta^*, \phi_1, \theta_1, \theta_2, \phi, m_{Z_1}, m_{Z_2}) = \frac{\mathcal{P}_{sig}}{\mathcal{P}_{sig} + \mathcal{P}_{bkg}}$$

- BDT, NN etc. offer similar performance (updates with these methods are planned for past-Moriond time)

$M_{4\ell}$ with K_D requirements

VBF H→ZZ analysis

- Sensitivity to VVH and ffH couplings $(\mu_V \mu_F)$
- Split $121.5 < M_{4\ell} < 130.5$ GeV events into two categories
 - Tagged: events with ≥ 2 jets (p_T > 30 GeV, $|\eta| < 4.7$)
 - Use Fisher discriminant with m_{ij} and $\Delta \eta_{ij}$ as inputs
 - Untagged: all other events
 - Use $p_T/m_{4\ell}$ as discriminant

Production mechanism

$$\sigma/\sigma_{\rm SM} = 0.91^{+0.30}_{-0.24}$$

Sensitivity

- Minimum *p*-value is at low mass \sim 125.8 GeV
- More than 5σ significance

Analysis	Expected	Observed
1D(m _{4ℓ})	5.6σ	4.7σ
$2D(m_{4\ell}, K_D)$	6.9σ	6.6σ
3D(m _{4ℓ} , K_D , V_D –p _T /m _{4ℓ})	7.2σ	6.7σ

$H \rightarrow ZZ \rightarrow 4\ell$ mass measurement

- Use lepton momentum uncertainties to build eventby-event mass uncertainty
 - Result: $m_{\rm H} = 125.8 \pm 0.5 ({\rm stat.}) \pm 0.2 ({\rm syst.}) \; {\rm GeV}$
 - ▶ Still statistically limited

$H \rightarrow WW \rightarrow 2\ell 2\nu$

• Two high-p_T isolated leptons and moderate MET

- Split data into two categories
 - different-flavor (DF), same-flavor (SF)
 - No jet, 1-jet (VBF is not updated for Moriond)

- Two approaches: cut-based and shape-based
 - Use 2D $(M_{\ell\ell}-M_T)$ to separate signal from background for DF shape-based analyses, counting method for the rest; $M_T = \sqrt{2p_T^{\ell\ell} \ \mathrm{MET} \ cos\Delta\phi_{\ell\ell-\mathrm{MET}}}$

$H\rightarrow WW\rightarrow 2\ell 2\nu$ backgrounds

- Selection to reduce backgrounds
 - W+Jets: tight lepton identification and isolation
 - Drell-Yan: MET and Z veto in SF category
 - Top: top-veto using b-tagging and soft-muon tagging, as well as jet binning
 - WZ/ZZ: reject events with a third lepton
- All major backgrounds are estimated from data
- Continuum WW production is the dominant background
 - Extract from $M_{\ell\ell}$ control region (cut-based) or free-floating normalization in 2D fit

$H \rightarrow WW \rightarrow 2\ell 2\nu$ N-1 distributions

• Different flavor 0-jet category for combined data sets after all selection criteria but one:

- Relatively large excess for a "simple" cut-based analysis

$H \rightarrow WW \rightarrow 2\ell 2\nu$ upper limits

- Exclude 128-600 GeV at 95% C.L.
- Excess in the low mass region results in a weaker than expected upper limit
 - Injecting $m_H = 125$ GeV signal as the background results in no excess to be observed
 - Consequently, no evidence for other resonances with high mass

$H \rightarrow WW \rightarrow 2\ell 2\nu$ significance

- Observed significance of the excess is 4.0σ , expected is 5.1σ (shape-based analysis)
 - $\sigma/\sigma_{\rm SM} = 0.76 \pm 0.21$

Search for H→ττ

HIG-13-004

- Two analyses: inclusive and VH
 - 1jet and VBF categories
 - Leptons in final state: e, μ , and τ_h
 - Hadronic tau leptons are reconstructed based on the decay modes
- hadron hadron+strip 3 hadrons
- ▶ MVA isolation using relative Σp_T of particles in concentric ΔR rings around τ
- ▶ Discrimination against electrons and muons using EM shower shape, E/p and muon hits

M_{ττ} reconstruction

- Maximum likelihood method used to estimate $M_{\tau\tau}$
 - Event by event basis using 4-vectors of visible decay products, MET, and expected MET resolution

$$\mathcal{L} = \underbrace{\theta_1}_{\theta_2} \times \underbrace{\mathcal{E}_{\mathrm{T}}^{\mathsf{miss}}}_{\mathsf{E}_{\mathrm{T}}^{\mathsf{miss}}}$$

- Resolution is 15-20% on reconstructed invariant mass of ττ system

Backgrounds H→ττ

- Several backgrounds, $Z \rightarrow \tau \tau$ is the largest
 - Z $\rightarrow \tau \tau$: use Z $\rightarrow \mu \mu$ data, replace μ with simulated τ decays
 - OCD: use same-sign control sample, corrected for SS/OS ratio
 - $Z \rightarrow \ell \ell$: use simulation, correct for $\ell \rightarrow \tau_h$ misidentification rate
 - W+jets: simulation shape, normalization from high-M_T sideband

S/B Weighted dN/dm [1/GeV]

Combining M_{tt} and VH

1-jet and VBF categories for e μ , e τ_h , $\mu \tau_h$, and $\tau_h \tau_h$

WH and ZH

H→ττ results

- Maximum local significance is at 2.94σ at 120 GeV compatible with 126 GeV Higgs
- Best fit $\sigma/\sigma_{SM} = 1.1 \pm 0.4$

Where does new boson fit best?

Spin parity studies, H→ZZ

Consider several J^P hypotheses of pure states

HIG-13-002

J^P	production	description	
0+	$gg \to X$	SM Higgs boson	
0-	$gg \to X$	pseudoscalar	
0 ⁺ _h	$gg \to X$	BSM scalar with higher dim operators (decay amplitude)	
2^+_{mgg}	$gg \to X$	X KK Graviton-like with minimal couplings	
$2^{+}_{mq\bar{q}}$	$q\bar{q} \to X$	KK Graviton-like with minimal couplings	
1- "	$q\bar{q} \to X$	exotic vector	
1+	$q\bar{q} \to X$	exotic pseudovector	

- Build two kinematic discriminants based on the
 - leading order MEs
 - Discriminator D_{JP} to separate SM Higgs hypothesis from alternative hypothesis
 - Discriminator D_{bkg} to separate SM Higgs from backgrounds
 - Use kinematics and $M_{4\ell}$ information into one discriminant

Templates for gg→0⁻ hypothesis

 $2e2\mu$ final state for 8 TeV

$D_{\rm JP}$ distributions ($D_{\rm bkg} > 0.5$)

Spin-parity: test statistics

Spin-parity: H→ZZ results

Expected [σ]

Observed, μ from data [σ]

	μ=1	μ from data	P(q > Obs alternative)	P(q > Obs SM Higgs)	CLs
gg→0-	2.8	2.5	3.3	-0.5	0.16%
$gg \rightarrow 0_{h}$	1.8	1.7	1.7	0.0	8.12%
$qq \rightarrow 1^+$	2.6	2.3	> 4.0	-1.7	<0.01%
qq→1 ⁻	3.1	2.8	> 4.0	-1.4	<0.01%
$gg \rightarrow 2m^+$	1.9	1.8	2.7	-0.8	1.46%
$qq \rightarrow 2m^+$	1.9	1.7	4.0	-1.8	0.09%

- Pseudo-scalar, spin-1, and spin-2 hypotheses are excluded at 95% C.L. or higher
 - Data is consistent with SM Higgs scenario

Spin in WW $\rightarrow 2\ell 2\nu$

- Use DF 0/1 jet channels to probe spin scenarios
 - Shape-based analysis
- Use 2D templates of M_T and $M_{\ell\ell}$ for SM Higgs and spin-2 minimal coupling scenario (gg $\rightarrow 2_m+$)

Spin in WW: results

CMS Preliminary $\sqrt{s} = 7 \text{ TeV}$, L = 4.9 fb⁻¹; $\sqrt{s} = 8 \text{ TeV}$, L = 19.5 fb⁻¹

Hypothesis	Expected	Observed				
Fix $\mu = 1$						
$gg \rightarrow 0^+$	1.9σ	0.9σ				
$gg \rightarrow 2m^+$	2.4σ	1.3σ				
Fit μ from data						
$gg \rightarrow 0^+$	1.5σ	0.5σ				
$gg \rightarrow 2m^+$	1.8σ	1.3σ				

- Expected separation is at the 2σ level
 - Data consistent with either hypothesis

Summary of Higgs results

- So far it looks as if the newly discovered particle is the SM Higgs boson
 - Data are consistent with SM 0⁺ scenario and disfavor pure pseudo-scalar, vector, pseudo-vector, and spin-2 resonances with minimal couplings
 - Signal strengths are also consistent with SM prediction
- Mass is ~125.8 GeV
 - HCP combination of $\gamma\gamma$ and inclusive ZZ yields $M_X=125.8\pm0.6~{
 m GeV}$
 - Dead on with the updated mass ZZ measurement

Summary of Higgs results

- So far it looks as if the newly discovered particle is the SM Higgs boson
 - Data are consistent with SM 0⁺ scenario and disfavor pure pseudo-scalar, vector, pseudo-vector, and spin-2 resonances with minimal couplings
 - Signal strengths are also consistent with SM prediction
- Mass is ~125.8 GeV
 - HCP combination of $\gamma\gamma$ and inclusive ZZ yields $M_X=125.8\pm0.6~{
 m GeV}$
 - Dead on with the updated mass ZZ measurement

How does it affect the rest of the CMS physics program?

Questions, questions...

- What, if anything, makes the Higgs mass light?
 - QFT: $m_H^2 = m_H^{2 \ tree} + \Delta m_H^{2 \ top} + \Delta m_H^{2 \ W,Z} + \Delta m_H^{2 \ self} \sim \mathcal{O}(125) \text{GeV}$
 - Corrections diverge quadratically $\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} [\Lambda_{\rm UV}^2 + \dots]$
- Either we live in a fine-tuned Universe or QFT is wrong, or there must be Nima Arkani-Hamed, Savas Fest 2012

wrong, or there must be some new physics to take care of divergences

 SUSY: offers DM candidate, unification of couplings, and solves Higgs mass divergency

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} [\Lambda_{\rm UV}^2 + \dots]$$

$$\Delta m_H^2 = \frac{\lambda_s}{8\pi^2} [\Lambda_{\rm UV}^2 + \dots]$$

Cumpulsory Natural SUSY

1300

The standard of the standard of

Natural vs. Unnatural

Natural	Unnatural		
SUSY - Light sbottoms, stops	Split SUSY - Long-lived particles		
Extra dimensions - High mass KK partners $(X \rightarrow VV, \ell\ell, \gamma\gamma, \text{ top pairs})$	Something else? - New physics that gives us DM candidate		
Compositeness - Vector-like partner to top quark, new strong-like interaction	No new physics at currently reachable energies - Limits, limits, limits		

Searching for SUSY

Light stops, sbottoms: final states include multiple

SUS-12-024

jets, leptons, and MET

- (b)jets + MET
 - Use 176 mutually exclusive categories

Searching for SUSY (jets+MET)

• Use global fit to extract contributions from different backgrounds and compare predictions to data in bins most sensitive to signal

- No evidence for signal...

Searching for SUSY: \(\ell\)+jets+MET

SUS-13-007

Major backgrounds: tt+jets and DY

- Lepton Spectrum estimation method:
 - ▶ Use lepton p_T in signal to predict MET from tt+jets
 - Use control sample ($\ell\ell$ +jets) to infer DY contribution
- $\Delta \varphi$ method:
 - Use $\Delta \varphi(W, \ell)$ and $S_T^{lep} \equiv \sqrt{p_T(W)^2 + M_T(W)^2}$
 - For top events $\Delta \varphi(W, \ell)$ is small, while DY contribution has flat $\Delta \varphi(W, \ell)$. Use low b-tagged jet samples to calibrate this background

Normalized

Summary plots on SUSY

Dilepton searches

EXO-12-061

Two high-p_T leptons

- Selection is tuned to maximize the significance in $M_{\ell\ell}$
- Requires different selection
 criteria + validation methods
 - ▶ Well-modeled in MC simulation
 - ▶ Use eµ data to verify

Dilepton searches

No evidence for new physics

EXO-12-027

EXO-12-031

Search for LED

Search for W'

One high-p_T isolated lepton

EXO-12-060

- Backgrounds are estimated from simulation
- Fit full MT at high masses to empirical function

igh masses to empirical function
$$\frac{\alpha}{(M_{\rm T}^3 + bM_{\rm T} + c)^d}$$

$$V_{\rm T} = \sqrt{2p_{\rm T}^\ell \cdot {\rm MET} \cdot (1 - \cos\Delta\phi_{\ell,\ell})}$$

Interpretation of W' search

Many interpretations

- Excluded 3.35 TeV of W' at 95% CL
- Limits on contact interactions
 - \land \land 13.0 TeV (e+MET) and \land > 10.9 TeV (μ +MET) at 95% CL
- Limits on W_{KK} (split UED)

Searching for Dark Matter

EXO-12-048

J. Feng 0801.1334v2

(2)

SM

 $\sigma_A v \sim 4\pi\alpha^2/M_D^2$

(3)

x=m/T (time \rightarrow)

Increasing < o, v>

- Dark matter can be searched for at LHC
 - Probably produced in pairs
 - WIMP "miracle"
 - $M_D \sim 10 1000 \text{ GeV to get } \Omega_{DM} \text{ right}$
- If you produce it at LHC in pairs you must find the trigger
 - Initial state radiation: γ+MET and jet+MET

- ADD Large extra dimensions
- Unparticle models
- Light stop
- Anomalous TGCs (γ+MET)

0.0001

10-19

10-1

10-10

Example of signal event

Event selection

- Energetic jet + MET requirement
 - Require up to one extra jet, and no extra leptons
 - Use $\Delta \varphi_{j1, j2}$ to reduce QCD contribution
- Major backgrounds are estimated in data
 - Z+jet $\rightarrow vv$ + jet (estimated from Z $\rightarrow \mu\mu$ data)
 - W+jet \rightarrow misidentified lepton + v + jet (W \rightarrow µv data)
 - Multijets, Zjets, ttbar etc (estimated in MC simulation)

MET (GeV)	$Z \rightarrow vv$	W+jets	ttbar	Z+jets	t	QCD	Total	Data
500	671 ± 81	269 ± 20	6	2	1	1	949 ± 85	894
550	370 ± 58	128 ± 13	3	1	0	0	501 ± 60	508

Monojet results

Current physics landscape

Summary

• We seem to discover the first fundamental scalar field

- Spin-parity results are consistent with the SM Higgs and disfavor other considered scenarios; signal strengths are consistent with the SM prediction as well.
- Mass is 125.8 ± 0.6 GeV
- More results to follow later this summer

• A lot of experience with data analyses at Run 1

- Rather complex searches, pushing capabilities of the hardware to its fullest (but still a lot of things can be improved for Run 2!)

No evidence for physics beyond the SM so far

- Is new physics that control the Higgs mass is right around the corner? Or do we live in a very unnatural Universe?

Backup

$WH \rightarrow WWW \rightarrow 3\ell 3\nu$

- Final state: three high-pT leptons (e or μ) and MET
 - Veto Z candidates and b-jets to reduce WZ and top events
- Two approaches: cut- and shape-based using $\Delta R_{\ell^+\ell^-}$

$H \rightarrow Z\gamma$

- Use muon and electron Z decays
- Four event categories based on event topology and whether photon converted or not
 - Improves S/B and mass resolution

Pileup and isolation

- Charged particles are considered from the primary vertex only (electrons, muons, charged hadrons)
 - Removes the pileup contribution from charged particles
- Neutral contribution is subtracted on average using FASTJET simulator arXiv:1111.6097

Pileup and isolation

- Charged particles are considered from the primary vertex only (electrons, muons, charged hadrons)
 - Removes the pileup contribution from charged particles
- Neutral contribution is subtracted on average using FASTJET simulator arXiv:1111.6097

CMS Detector

$X \rightarrow ZZ \rightarrow 4\ell$ angles

• Illustration of production angles θ^* and φ_1 of a particle X production in X rest frame and three decay angles θ_1 , θ_2 , and φ in the P_i rest frames

CMS detector

Lepton identification

- Muon resolution dominated by inner tracking for $p_T < 200 \text{ GeV}$
- Typical p_T resolution $\sim 1-2\%$
- Muon chambers offer redundant trigger and coverage
- Muons can be reconstructed both in inner tracker and muon chambers

- Excellent resolution provided by the PbWO₄ crystal calorimeter
- Typical E_T resolution is $\sim 1-2\%$
- Electron identification is based on shower shape variables, ECAL-Tracker matching and HCAL/ECAL energy ratio

Photon identification

- Highly segmented CMS ECAL
 - 80,000 PbWO₄ crystals
 - Excellent design of ~0.5% constant term

- For unconverted photons: matrix of 5x5 crystal
- For converted photons: super cluster: $\varphi \times \eta$ area

Transparency

